Control the host cell cycle: viral regulation of the anaphase-promoting complex.

نویسندگان

  • Anthony R Fehr
  • Dong Yu
چکیده

Viruses commonly manipulate cell cycle progression to create cellular conditions that are most beneficial to their replication. To accomplish this feat, viruses often target critical cell cycle regulators in order to have maximal effect with minimal input. One such master regulator is the large, multisubunit E3 ubiquitin ligase anaphase-promoting complex (APC) that targets effector proteins for ubiquitination and proteasome degradation. The APC is essential for cells to progress through anaphase, exit from mitosis, and prevent a premature entry into S phase. These far-reaching effects of the APC on the cell cycle are through its ability to target a number of substrates, including securin, cyclin A, cyclin B, thymidine kinase, geminin, and many others. Recent studies have identified several proteins from a number of viruses that can modulate APC activity by different mechanisms, highlighting the potential of the APC in driving viral replication or pathogenesis. Most notably, human cytomegalovirus (HCMV) protein pUL21a was recently identified to disable the APC via a novel mechanism by targeting APC subunits for degradation, both during virus infection and in isolation. Importantly, HCMV lacking both viral APC regulators is significantly attenuated, demonstrating the impact of the APC on a virus infection. Work in this field will likely lead to novel insights into viral replication and pathogenesis and APC function and identify novel antiviral and anticancer targets. Here we review viral mechanisms to regulate the APC, speculate on their roles during infection, and identify questions to be addressed in future studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orf virus cell cycle regulator, PACR, competes with subunit 11 of the anaphase promoting complex for incorporation into the complex.

The poxvirus anaphase promoting complex regulator (PACR) promotes viral replication by manipulating the anaphase promoting complex/cyclosome (APC/C), a multisubunit ubiquitin ligase complex with essential roles in cell cycle regulation. PACR has sequence similarities to APC/C subunit 11 (APC11) and associates with APC/C subunits. However, unlike APC11, expression of PACR disrupts APC/C function...

متن کامل

Cell cycle deregulation by a poxvirus partial mimic of anaphase-promoting complex subunit 11.

The anaphase-promoting complex (APC), or cyclosome, is a ubiquitin ligase with major roles in cell cycle regulation. It is required for mitotic exit, but must be deactivated for the G(1)/S phase transition to occur. APC consists of at least 12 subunits with the catalytic core formed by a scaffold protein, APC2, and a RING-H2 protein, APC11. APC11 facilitates ubiquitin chain formation by recruit...

متن کامل

The anaphase-promoting complex/cyclosome: APC/C.

The major ubiquitin ligase required for mitosis is the anaphase-promoting complex/cyclosome (APC/C). This unusually complex E3 ubiquitin ligase targets cell-cycle-related proteins such as cyclins and securin for degradation by the proteasome in mitosis and meiosis. The APC/C is regulated by phosphorylation, as well as by various activators and inhibitors that alter its substrate specificity at ...

متن کامل

APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway

The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 87 16  شماره 

صفحات  -

تاریخ انتشار 2013